Aplicații

E-mail 1001 Solutii

Cum eliminam complet Microsoft Edge

Fie ca suntem deranjati de Microsoft Edge, fie ca ne-am hotarat sa folosim un alt browser pentru navigarea pe internet sau intampinam incompatibilitati software, exista momente cand dorinta de a-l elimina rapid poate fi o salvare.

Edge Remover, asa cum sugereaza si numele sau, a fost conceput pentru a face un singur lucru, si numai un singur lucru: dezinstaleaza Microsoft Edge din sistem. Edge Remover simplifica procesul de eliminare a Microsoft Edge Browser si WebView2 oferind doua optiuni: eliminarea Edge Browser impreuna cu WebView2 sau eliminarea doar a Edge Browser. Aplicatia nu are o interfata grafica si prezinta in schimb o singura fereastra pop-up cu optiunile disponibile. Dupa ce selectam o optiune, aplicatia executa imediat sarcina.

[mai mult...]

RFID Door Lock with Arduino

In this detailed guide, you’ll learn how to build an RFID door lock system using an Arduino Uno and an MFRC522 RFID reader. The system reads RFID cards or keyfobs, checks authorization, and controls a solenoid lock or servo latch to grant access. It’s perfect for home automation, maker projects, or educational demonstrations.

Solenoid Lock Wiring

Arduino D7 → Gate of MOSFET (via 100Ω resistor)
MOSFET Source → GND (common)
MOSFET Drain → Solenoid negative terminal
Solenoid positive → +12V
12V supply GND → Arduino GND
Flyback diode across solenoid (1N4007, cathode to +12V)

Optional Servo Connection

Servo Signal → D7 (PWM)
Servo V+ → 5V external supply
Servo GND → Common GND

Arduino Code — Basic Version

This version uses a hard-coded list of authorized RFID tags.

/* RFID Door Lock - Basic Version */
#include <SPI.h>
#include <MFRC522.h>
#include <Servo.h>

#define RST_PIN 9
#define SDA_PIN 10
MFRC522 rfid(SDA_PIN, RST_PIN);

#define ACTUATOR_TYPE 0  // 0=Solenoid/Relay, 1=Servo
const int RELAY_PIN = 7;
const int LED_PIN = 4;
const int BUZZER_PIN = 5;
const int SERVO_PIN = 7;
const unsigned long UNLOCK_MS = 3000;
Servo lockServo;

void setup() {
  Serial.begin(115200);
  SPI.begin();
  rfid.PCD_Init();
  pinMode(LED_PIN, OUTPUT);
  pinMode(BUZZER_PIN, OUTPUT);
  if (ACTUATOR_TYPE == 0) {
    pinMode(RELAY_PIN, OUTPUT);
    digitalWrite(RELAY_PIN, LOW);
  } else {
    lockServo.attach(SERVO_PIN);
    lockServo.write(0);
  }
  Serial.println("RFID door lock ready");
}

// Replace these with your own card UIDs
byte allowedUIDs[][4] = {
  {0xDE, 0xAD, 0xBE, 0xEF},
  {0x11, 0x22, 0x33, 0x44}
};
const int allowedCount = sizeof(allowedUIDs)/4;

bool uidAllowed(byte *uid, byte uidSize) {
  if (uidSize != 4) return false;
  for (int i=0;i<allowedCount;i++) {
    bool match = true;
    for (int j=0;j<4;j++) if (allowedUIDs[i][j] != uid[j]) { match = false; break; }
    if (match) return true;
  }
  return false;
}

void unlockAction() {
  Serial.println("UNLOCK!");
  digitalWrite(LED_PIN, HIGH);
  tone(BUZZER_PIN, 1000, 150);
  if (ACTUATOR_TYPE == 0) {
    digitalWrite(RELAY_PIN, HIGH);
    delay(UNLOCK_MS);
    digitalWrite(RELAY_PIN, LOW);
  } else {
    lockServo.write(90);
    delay(UNLOCK_MS);
    lockServo.write(0);
  }
  digitalWrite(LED_PIN, LOW);
}

void loop() {
  if (!rfid.PICC_IsNewCardPresent()) return;
  if (!rfid.PICC_ReadCardSerial()) return;

  Serial.print("Card UID:");
  for (byte i=0;i<rfid.uid.size;i++) {
    Serial.print(" ");
    Serial.print(rfid.uid.uidByte[i], HEX);
  }
  Serial.println();

  if (uidAllowed(rfid.uid.uidByte, rfid.uid.size)) {
    Serial.println("Access granted");
    unlockAction();
  } else {
    Serial.println("Access denied");
    for (int i=0;i<2;i++) {
      tone(BUZZER_PIN, 600, 150);
      digitalWrite(LED_PIN, HIGH);
      delay(200);
      digitalWrite(LED_PIN, LOW);
      delay(100);
    }
  }

  rfid.PICC_HaltA();
  rfid.PCD_StopCrypto1();
}

Advanced Version — Store Tags in EEPROM

This version allows adding and removing authorized cards dynamically through the Serial Monitor.

/* RFID Door Lock - EEPROM Version */
#include <SPI.h>
#include <MFRC522.h>
#include <EEPROM.h>

#define RST_PIN 9
#define SDA_PIN 10
MFRC522 rfid(SDA_PIN, RST_PIN);

#define RELAY_PIN 7
#define LED_PIN 4
#define BUZZER_PIN 5
#define UNLOCK_MS 3000
#define MAX_TAGS 20
#define UID_SIZE 4
#define EEPROM_START 0

void setup() {
  Serial.begin(115200);
  SPI.begin();
  rfid.PCD_Init();
  pinMode(RELAY_PIN, OUTPUT);
  digitalWrite(RELAY_PIN, LOW);
  pinMode(LED_PIN, OUTPUT);
  pinMode(BUZZER_PIN, OUTPUT);
  Serial.println("RFID lock with EEPROM ready");
}

/* Helper functions omitted for brevity in this preview — see full code in guide */

Serial commands:

  • l — List stored tags
  • a — Add a new tag (scan after command)
  • r — Remove a tag
  • c — Clear all stored tags

Power Considerations

  • Use a separate 12V supply for the solenoid; common the grounds.
  • Add a large capacitor (470µF–2200µF) across the solenoid supply.
  • Always include a flyback diode to protect electronics.
  • If using a servo, power it from an external 5V supply.

Mechanical Installation

  • Ensure alignment between lock and strike plate.
  • Provide a manual override or emergency key.
  • Mount RFID reader within 5–10 cm of tag presentation area.
  • Keep metal objects away from the RC522 antenna.

Testing Steps

  1. Upload code and open Serial Monitor (115200 baud).
  2. Scan a card — its UID should appear.
  3. Add card to allowed list or EEPROM memory.
  4. Test actuator operation and timing.
  5. Confirm power supply stability under load.

Troubleshooting

Issue Possible Cause Fix
No response from reader Wrong wiring or 5V used Use 3.3V and correct SPI pins
Actuator not moving Power supply too weak or wrong driver Use proper MOSFET/relay and check GND
UIDs print gibberish Wrong Serial baud rate Match Serial.begin(115200)
Unstable lock Power noise Add capacitor or separate supply

Security Enhancements

  • Use MIFARE DESFire or NTAG cards for better encryption.
  • Add a keypad for two-factor access (RFID + PIN).
  • Implement attempt-limit lockout for brute-force protection.
  • Use metal enclosure and tamper switch for extra security.

Optional Upgrades

  • OLED/LCD display for user feedback
  • Wi-Fi / MQTT integration (ESP8266 or ESP32)
  • RTC + SD card logging for audit trail
  • Battery backup for power loss protection
  • Cloud dashboard or mobile control app.
[mai mult...]

Arduino Temperature Sensor

You’ll build a simple digital thermometer that measures ambient temperature using a temperature sensor (like the LM35, TMP36, or DHT11) and displays the reading via the Serial Monitor or LCD screen.

We’ll cover two main versions:

  1. Basic Version — Using an analog temperature sensor (LM35 or TMP36).

  2. Advanced Version — Using a digital sensor (DHT11 or DHT22) with humidity support.

Materials Needed

Component Quantity Description
Arduino Uno (or Nano/Mega) 1 The main microcontroller board
LM35 or TMP36 sensor 1 Analog temperature sensor
Breadboard 1 For easy circuit assembly
Jumper wires ~6 Male-to-male wires
USB cable 1 To connect Arduino to your computer
(Optional) 16×2 LCD Display 1 For local display
(Optional) 10kΩ Potentiometer 1 LCD contrast control

Step 1: Understand the Sensor

 LM35 Pinout

Pin Label Function
1 VCC +5V from Arduino
2 VOUT Analog output (connect to Arduino analog input)
3 GND Ground

The LM35 outputs 10 mV per °C.
So if the output voltage = 250 mV → temperature = 25°C.

Step 2: Wiring the LM35 to Arduino

Connections

LM35 Pin Connects To
VCC 5V on Arduino
GND GND on Arduino
VOUT A0 on Arduino

Circuit Diagram (Text Form)

[Arduino 5V] ---- [LM35 VCC]
[Arduino GND] ---- [LM35 GND]
[Arduino A0] ---- [LM35 OUT]

Step 3: Arduino Code (LM35 Version)

// Simple Temperature Sensor with LM35

const int sensorPin = A0; // LM35 connected to A0
float temperatureC;

void setup() {
Serial.begin(9600);
Serial.println(“LM35 Temperature Sensor”);
}

void loop() {
int sensorValue = analogRead(sensorPin); // Read analog value
float voltage = sensorValue * (5.0 / 1023.0); // Convert to voltage
temperatureC = voltage * 100; // 10mV per degree C (LM35)

Serial.print(“Temperature: “);
Serial.print(temperatureC);
Serial.println(” °C”);

delay(1000); // Update every second
}

Explanation

  • analogRead(A0): reads 0–1023 corresponding to 0–5V.

  • Voltage calculation: (value * 5.0) / 1023.0.

  • LM35 output scaling: 10 mV = 1°C → multiply voltage by 100.

Step 4: Viewing Data

  • Open Arduino IDE → Tools → Serial Monitor.

  • Set baud rate = 9600.

  • You’ll see continuous readings like:

    Temperature: 24.87 °C
    Temperature: 25.02 °C

Step 5: Calibration (Optional)

Real sensors may have small offsets.
You can adjust the output manually:

temperatureC = (voltage * 100) - 0.5; // Adjust by small offset

Compare readings with a known thermometer and tweak the offset until accurate.

Advanced: Using DHT11 / DHT22 (Digital Sensor)

Required Library

  • Install “DHT sensor library” by Adafruit from Arduino Library Manager.

Wiring (DHT11)

DHT11 Pin Connects To
VCC 5V
GND GND
DATA Digital Pin 2

Code (DHT11)

#include "DHT.h"

#define DHTPIN 2 // Data pin connected to digital pin 2
#define DHTTYPE DHT11 // or DHT22

DHT dht(DHTPIN, DHTTYPE);

void setup() {
Serial.begin(9600);
dht.begin();
}

void loop() {
float tempC = dht.readTemperature();
float humidity = dht.readHumidity();

if (isnan(tempC) || isnan(humidity)) {
Serial.println(“Failed to read from DHT sensor!”);
return;
}

Serial.print(“Temperature: “);
Serial.print(tempC);
Serial.print(” °C, Humidity: “);
Serial.print(humidity);
Serial.println(” %”);

delay(2000);
}

Step 6: (Optional) Display on LCD

If using a 16×2 LCD (I2C):

  1. Install “LiquidCrystal_I2C” library.

  2. Connect SDA → A4, SCL → A5.

  3. Example snippet:

#include <Wire.h>
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27, 16, 2);

void setup() {
lcd.init();
lcd.backlight();
}

void loop() {
lcd.setCursor(0, 0);
lcd.print(“Temp: “);
lcd.print(temperatureC);
lcd.print(“C”);
}

Troubleshooting Guide

Issue Possible Cause Solution
No readings / 0°C Wrong wiring or pin Check sensor pins
Negative readings Wrong sensor type (TMP36 needs offset) Adjust formula
Unstable readings Noisy analog signal Add capacitor (0.1 µF) between VOUT & GND
“nan” or “Failed to read” DHT library issue Check sensor type & connections

Next Steps & Enhancements

  • Add OLED / LCD display for portable thermometer

  • Store data using SD card module

  • Upload readings to the cloud via ESP8266 / WiFi module

  • Use RGB LED to indicate temperature range (blue/cool, red/hot)

  • Build an IoT dashboard (ThingSpeak, Blynk, etc.).

[mai mult...]